POSITIVE SOLUTIONS FOR FUNCTIONAL
BOUNDARY VALUE PROBLEMS
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ABSTRACT. Sufficient conditions which guarantee the existence of positive concave
solutions of a boundary value problem for a second order functional differential equa-
tion are provided. The results are obtained by applying the Krasnoselski’s fixed point
theorem on cones.

1. INTRODUCTION

We investigate when a boundary value problem for a second order functional
differential equation admits positive concave solutions.

Let R denote the set of real numbers and R the set of nonnegative reals. For a
fixed number r € Rt we denote by C, the Banach space of all continuous functions
¢: [=r,0] =: J — R endowed with the sup-norm ||¢||; := sup{|#(s)|: s € J}. In the
sequel we shall work especially with the set

Cho={p€Cr:¢(s) >20=9(0),s € J}.

Also, for any continuous function = defined on the interval [—r,1] and any ¢t € I :=
[0,1], we shall denote by x; the element of C, defined by

ze(s) =z(t+s), s€J
In this paper we deal with the functional differential equation
(1.1) (p(1)z'(t))' + F(t,2:) =0, tel,

where ' : I x C; — R and p: I — (0,+0c0) are continuous functions. For a good
review of this class of functional differential equations we refer to the book by Driver
[5], while in the most recent book by Hale and Lunel [9] a detailed exposition of
the subject is presented.

We associate equation (1.1) with the following boundary conditions
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(1.3) az(1) + p(1)bz'(1) =0,

where ¢ € C;; is a given function and a, b are real numbers with a > 0 and & > 0.

Boundary value problems of this kind constitute an interesting subject in the
theory of functional differential equations and appeared early in the literature.
(See [7, 8].) For the existence of solutions of such boundary value problems, fixed
points theorems and especially contraction principle, Schauder’s theorem, topolog-
ical transversality and its consequences, are mainly used. For more details on this
research area we refer to the books [6, 10] and the papers [1, 16-18] as well as
the references therein. During the last two decades a great interest is observed on
existence results for positive solutions of functional boundary value problems. (See
(1, 4, 11-14, 19, 20].) This interest comes from situations involving nonlinear ellip-
tic problems in annular regions and covers the point-delayed case, namely the so
called retarded case (see [1, 7, 14, 20]), as well as the case of functional differential
equations (see [4, 8, 11-13, 9]).

In this paper our purpose is to establish sufficient conditions for the existence of
positive concave solutions of the boundary value problem (1.1) — (1.3). Our main
results are obtained by using the following well known fixed point theorem due to
Krasnoselskii [15].

Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume that
Q; and Qo are open subsets of B, with 0 € Oy C cll; C Q3 and let

A KN(cdQ\ ) — K
be a completely continuous operator such that either
lAz|| < lull, v e KndQ and ||Au|l = |u|, v e KN oQs,

or
|Au|| = ||ull, v€e KN and ||Aul| < |ul|, ue Kno,.

Then A has a fized point in K N (clf2 \ ©1).

The paper is organized as follows: Section 2 is devoted to the assumptions of
our setting and to transform the boundary value problem into an integral equation,
where the corresponding operator has some properties. We emphasize on these
properties as well. In Section 3 we present the main existence results. In Section
4 we shall make a discussion concerning the choice of Theorem 1.1 in solving the
boundary value problem (1.1)-(1.3) and in the last section we give a one- parameter
application, just to illustrate the results.

2. THE PROBLEM SETTING AND THE ASSUMPTIONS

Let Co(I) be the space of all continuous functions z : I — R with z(0) = 0. This
is a Banach space when it is furnished with the sup-norm ||z|; := sup{|z(s)|:s € I'}.
We set
CfI)={zeC(,R): =z(t)>=z(0)=0, tel}.

In the sequel when functions ¢ € C;"' o and z € C{f (I) are given, we shall denote by
z(+; ¢) the function which is equal to z on I and to ¢ on J. Then for each ¢ € I the
function z:(s; @) = z(t + s;9), s € J is a point of the set C(J,R).
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By a solution of the boundary value problem (1.1) — (1.3) we mean a function
z € Co(I) such that the derivatives =’ and (pz2’)’ exist on I, it satisfies condition

(1.3) as well as the identity

(2.1) ()2 (t; )" + F(t, z:(54)) =0, tel

Searching for the existence of solutions of the boundary value problem (1.1)-(1.3)
we shall reformulate it to an appropriate operator equation. To find this operator
equation, we assume that z is a solution and, for simplicity, we let

2(t) == F(t,z:(; 9)).

Then for each t € I by integration we get p(t)z'(t) = p(1)z'(1) + _ﬂ z(s)ds. Taking
into account that z(0) = ¢(0) = 0, we obtain

(2.2) () = fo (pg (1) + p{l) f 1 (B)dé) s

=p(1)z 1)] o ] ——)/SI 2(8)dfds

0 = az(1) + p(1)bz'(1)

= (p(l):r’(l)P(l) + /: rls) /sl z(Q)dﬁds) + bp(1)2'(1),

where P(t) := fotp(s}—lds, t € I. Hence we have

1 gt
1z'(1 =—acf —-[ 2(8)dfds,
p(1)2'(1) 0p(s)s()
where ¢ := (aP(1) + b)~!. Therefore, from (2.2), we get

(2.3) 2(t) = —acP(t) /0 iésid 3 f I%ds,

and so from (1.3) we get

where we have set i
gla) = f 2(6)db.
5

Now, for our convenience, write equation (2.3) in the form

2 S
0= [ 5o
(s

= f -(—-( — acP(t)ds + xo,4(s)ds)

-/ 1 =/ ' 2(0)dbdr(t,s),

g(—-acP(t)ds) + /D % Seios (8}
)

<l'.‘_‘
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where
v(t, s) := —acP(t)s + min{s,t}.

It is clear that for each ¢ € I the function (%, s) is of bounded variation with respect
to s. Applying Fubini’s theorem we get

t)_fz(ﬂ)f dey(t, 5)db

o(t) = fo 1 G(t,0)z(0)d8, tel,

and, finally,

where

2 1 f 1
G(t,8 :=/ ——d(t, s =/ ——ds(—acP(t)s + sx[0,1(9))-
Hence
(1—acP(t))P(s), s<t
G(t,s) =
(1 —acP(s))P(t), s=>t.
This is the Green’s function which corresponds to the problem
(p(t)2'()) =0, (1.2), (1.3).

Clearly, it agrees with the Green'’s function provided in [3].
Next define the operator Ay : Cf (I) — Co(I) by the formula

2.4) (Ag2)(t) == [0 G(t, 8)F (s, zs(~ )ds, t € I.

and observe that the following result holds:

Lemma 2.1. Given ¢ € C/y, a function z € C(I) is a solution of the boundary
value problem (1.1) — (1.3) if and only if = solves the equation

(2.5) z = Ay,

where Ay is the operator defined by (2.4)

Proof. We have shown that if = is a solution of the boundary value problem (1.1) —
(1.3), then z solves equation (2.5). So, it remains to show that, if = is a solution of
equation (2.5), then z is also a solution of the boundary value problem (1.1)-(1.3).

Indeed, if = solves (2.5), then it solves the equivalent equation (2.3). Obviously
it holds z(0) = 0 and, moreover,

d 1
p(t)z’(t) = —ac ]D %ds—f— j F(s,24(9))ds

which implies (2.1). Also, from (2.3) we have

1 1 ,0g
z(1) = (—acP(1) +1)/0 %ds and p(1)z'(1) = —-—ac/o Iy)—gs%ds.
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Therefore

Yy,

S
p(s

az(1) + p(1)bz'(1) = (—acP(1) +a — abc)fo
= (1—c(b+aP(1))) fol %ds i

which prove that (1.3) is also satisfied. O
To proceed we establish the following conditions:

(Hy) There exist a continuous function u : I — (0,+0c0) and a real number
M > 0 such that

F(t,9) Sult), tel, $€Cly: [0 <M

and

[Ji G(s, s)u(s)ds < M.

(Hz) There exist continuous functions v : I — (0,+00), 7 : I — [0,7] nonde-
creasing functions w; : Rt — R, j = 1,2 and real numbers

O<rm<r 0<o<min{r,l}, p>0, 0<l<%
satisfying
m:=l£2<M,
I<t—71()<1-1, forall t€o]]
and
wi(p) = Ap, j=1,2
where

A= . L
Rbc [ P(s)v(s)ds

and such that
{ v(t)wi(¥(-r1)), t€0,0]
F(t,¢) 2
v(t)we((—7(2), t€lo1],
for all ¥ € C7,.

(Hz) p:I — (0,400) is a continuous, nonincreasing function such that the
function
e™p(t), tel,

where
VAP

fol u(s)ds’

is nondecreasing. Here vg := inf;er v(2).

The following lemmas are basic tools in the proof of our main results. The proof
of the first of them can be found in [2].
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Lemma 2.2. Let x € C(I) be a nonnegative and concave function. Then for any
t € I we have
z(t) 2 t(1 —t)lz[|z.

Now consider the cone
= {¢ € C';‘!,-O : ¢(t} 2 lzl[¢”7 te [_TI:'—T]. +J]}

Lemma 2.3. Consider the continuous functions p, F satisfying assumptions (H1)—
(Hs). Let ¢ € ® with m < ||¢[ly < M and a concave function z € Cy (I) with
m < ||lz|l; < M, where m, M are given in assumptions (Hsz), (Hs). Then

(i) for all t,0 € I it holds

1
Flt,z(56)) 2 1 fa F(s,2:($))ds

and
(i) the function

1

U(t) := _?E

/1 F(s,zs(-;¢))ds, tel

18 nonincreasing.

Proof. (i) Taking into account assumptions (H;) — (Hs) and Lemma 2.2, we see
that for every ¢ € [, 1] it holds

F(t,2:(5 ) 2 v(t)wi(z(t — 7(t); ¢)) = vows((t — 7(£)))(1 — (¢ = 7(2))l|=] 1)
> vowy (12m) = vows (p) > voAp.

Also for every ¢ € [0, 0] we have

F(t,2:(59)) 2 v(t)wa(z(t — r1; ) = vowa(¢(t — 1))
> vowe(12m) = vows(p) > voAp.

On the other hand for all 8 € I we have
1 1 1
1 [ FlozioNds <n [ Fls,zi(o)ds <n | uo)s
8 0 0
which, due to the previous arguments, is equal to

vpAp < F(t, zi(5 ),

for all ¢ € I. This proves statement (i).
(ii) Let t1,%2 € I be such that ¢; > t3. We set

q(t) := 2@’ tel.
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By using statement (i) we have
1 1
¥(tr) = W) = o(t1) | Fls,za(10)ds —alta) [ Fls,za(30)ds

= q(t) ( [ : F(s,,(6))ds - / : F(s,zs(-;@)ds)

t2

!
+(alts) — a(t2)) j F(s,25(56))ds

= —qtr) [ F(s,2a(;8))ds + (alts) — q(t2)) ] F(s,z4( 9))ds

t2

<—att) [0 [ Flo,za(s0)dit
T
+(altr) — q(t2)) / Flsyzs(s8))ds

1
= (=t ~ t2)a(tr) + a(tr) — a(t2)) | Fls,as(0))ds.
ta
By (Hs) the function g(¢)e™™ is nonincreasing and thus it holds

g(t1)e™™ < q(tz)e

or, equivalently,
g(t1)
q(t2)

Since for all z > 0 it holds —In z — 1+ z > 0, we get

n(ty — tg) >lIn

1
W(t:) ~ W) = (= nltr —ta)a(tr) + o(t) — a()) [ Flo,u(36))ds

q(t2) atz)\ [ 2 .
< —q(t1) (_lnq(tl) -1+ ) /tg F(s,zs(-;¢))ds < 0.

q(t1)

The last integral is nonnegative because of (Hs) and the proof is complete. O

3. MAIN RESULTS

Define the set
K:={z € Cf(I): z is concave},

which is a cone in Cy(I). We use the symbol B(0,d) to denote the sphere in the
Banach space Cp(I) with center 0 and radius d. Then, as usually, c/B(0,d) will
denote the closure of B(0,d). Before stating our main result we shall prove two
basic lemmas.

Lemma 3.1. Consider continuous functions p, F satisfying assumptions (Hy) —
(H3). Then for each ¢ € ® with m < ||¢||l; < M, the operator Ay maps the
set KN (clB(0, M)\ B(0,m)) into K and it is completely continuous, i.e. it maps
bounded sets into relatively compact sets.
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Proof. First observe that since a > 0 and b > 0 it holds 1 — acP(t) > 0,t € I and
therefore we have G(t,s) > 0, for all ¢, s € I. Moreover, by (Hz) it is clear that

F(tsxt(':¢) = 03

for all £ € I and z € K. Hence A4(z) > 0 for every z € K.
Next we claim that the image A,z is a concave function for every z € KN

(c2B(0, M) \ B(0,m)).
Indeed, let £1,%2 € I be points such that ¢; > #3. Then it is enough to show that

D := (Agz)(t1) — (Ap)(t2) — (Apa) (t2)(t1 — t2) <O

To do this, we take into account that Asz is defined by the right side of (2.3). So
we have
D = (A7) (t1) — (Ap)(t2) — (Asz)'(t2)(f1 — t2)

1 ds

1 1
=—c.:c/0 Ha)—/g F(s,z4(-;0))dsdf L ﬁ
iy 1 1
+/t —/; F(s,z(-; ¢))dsdf

. P(9)
SO e [ s [ Flom(dean + f F(s,2(39)ds]

1 1 1 dg 1—
< —ac-/; 1%9)/6 F(S,xs(';¢))d3d9[lz %‘)_ tp(t2§2]
1 t 1
_ [_*1‘*2[ F(s,xs(-;qs))ds—L T]é)fe F(s,xs(-;as))dsd@]

p(t2)
Since p is a nonincreasing function, we have
t1 d .
(3.1) f gu B _Bsh
w P(s)  p(t2)

On the other hand by Lemma 2.3, for any € > t2, we have

1 _
p(_Tz) : F(s,ms(-;é))dssze F(s,zs(-;¢))ds.
Hence it holds
ti—ts [ ; tl.i ' s zs(- s
62 222 [ FenGou: [ o || Plo.auts o)dsae.

Taking into account (3.1) and (3.2) we conclude that D < 0, which proves our
claim, namely the concavity of the function Ayz.

Finally, from (H) it follows that F(t,-) maps bounded sets into bounded sets.
This means that A, maps bounded sets into relatively compact sets. Then the
uniform continuity of the Green’s function G(t,s) with respect to ¢ imply that A,
is a completely continuous operator. [
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Lemma 3.2. Assume that assumption (Ha) is satisfied. Then for every ¢ € @ and
z € K with ||z||; = m we have || 441 = |lz|1-
Proof. From (Hs) and Lemma 2.2 we have

ol > (As2)1) 2 [ 61, F6,2u(30)ds
> f " G(L, syols)w(a(s — 7(s); H)ds
> [ 61, 9)e(hun(ls = (o)1~ (5 = (el )ds
> fg " Gl olsn i)t g0) /0 6L s)u(s)ds

ik
> }\p/ G(1, s)v(s)ds = z% =m = ||z||;.
(=2

O

Lemma 3.3. Assume that assumption (Hy) is satisfied. Then for all ¢ € CFy and
z €K, with |¢||l; £ M and ||z|; = M, we have ||Ay|r < |lz|1-

Proof. First observe that for all s € J it holds

max G(t,s) = G(s, s).

From (H;) we have

l4gzl < [o G(s,5)F (s, z4(18))ds < fo G(s, s)u(s)ds < M = |al]r.

O
Now by applying Theorem 1.1 we get the main result of this paper:

Theorem 3.4. Consider the continuous functions p, F' satisfying the assumptions
(Hy)—(Hs). Then for any ¢ € ® withm < ||¢||; < M, the boundary value problem
(1.1) — (1.3) admits at least one positive concave solution z = z(-; ) such that

m < |z]|; < M.

4. DISCUSSION

‘We want to elaborate a little on the applicability of the Krasnoselskii’s theorem
1.1 in connection with the classical Schauder’s fixed point theorem.

As we have seen above, when applying Theorem 1.1 one has to demonstrate that
the operator A defined by (2.4) maps the closed set KN (c/B+(0, M) \ BT(0,m))
into K. And since the set ¢/B*(0, M) is a convex closed bounded set and A is a
completely continuous operator, which by Lemma 3 maps the closed convex set
cIB*(0, M) into itself, one can apply the Schauder’s fixed point Theorem to con-
clude the existence of a positive solution z of the operator equation (2.5), which
belongs to cIBT(0, M).
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Then we have to do two things:

a) Show that z belongs to the cone K.

b) Show that z does not belong to the ball B(0,m).

For the first argument we must show that z is a concave function, which means
that the image of any element of the set c/B*(0, M) is a concave function. To do
this we actually have to use the method applied in the first part of Lemma 3.1. But
then Lemma 2.3 is needed, where, on the other hand, the fact that the domain of A
has only concave functions is essential. Hence we have to assume that the solution
T is concave!

For the second argument we must show the the norm of the solution is greater
than m. But this can only be done by applying the method of Lemma 3.2, where,
notice that, the function z is assumed that it is concave.

From the previous fact we conclude that the Schauder’s fixed point Theorem is
not able to give the result of Theorem 3.4. Therefore under the conditions given in
our problem Theorem 1.1 is the appropriate tool to solve the problem.

5. AN APPLICATION

Consider the boundary value problem

(4.1) (e7* 2" () + |z(t — 1)|*? + |z (¢t - |t——])]1/2 0, 2T,

(4.2) zo=¢, z(1)+e*2'(1) =

where k is a positive real number such that

ek _9k2 — 92k —1 1
A(k) = ekue“f;‘_z_; <§

and ¢ € Cf, T,0- The previous inequality can be realized (for approximately & < 0.01)
since as, it is easily seen, it holds lim; o A(k) = 0.

Here we have r = 1, p(t) = e~ ¥,

F(t%) = [(=1)2 + o~ [t = 52

as well as
k

Ft)= F—1+k'

(eF* —1), c=

=

and
—2%2% -2k —1

/G(t t)ds = = 2k2( —1+5)

Then the corresponding quantities p, M and m are

k__ _ 2k\2 2k—2k2—2k—12
pi= (= t 3 ) , M= i = ) , m = 16p.
256k2(ek — 1 + k)2 ki (eF — 1+ k)2
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For the function F the corresponding upper and lower boundary functions u,v

and

and

w;,% = 1,2 needed in assumptions (Hy), (Hz) are defined by

u(t):uo ::2'\/}‘7, 'U(t) =g :=1, teI,

wI(C) = \/QT, f=1,2

while the constant A appeared in (Hz) is given by

_ 16k(eF — 1+ k)

A - s
ek —es —2k/3

Finally, the delay function 7(¢) := [t — §|, ¢ € I satisfies the relation

1 3
th—ru)sz,te[—1}

Now observe that p = A2, thus it holds w;(p) > Ap, for i =1,2.
Keeping these statements in mind, it is not hard to see that all conditions (H),
(Ha), (H3) with [ =1 and 0 = :,1,; are satisfied. Notice that

Y k(e* — e¥ — 2k/3)

1k
M= A 32—k —2k—1) _ BBAGR)

Finally, Theorem 3.4 imply that for any function ¢ € C{’: o such that

2

16¢(t) > ”¢”: te [_1! _73:]

and m < ||¢||; < M the boundary value problem (4.1),(4.2) admits at least one
positive concave solution x = z(-; @) such that

[
2]
3
[4

(5]
(6]

[7]

(9

m < |jzl|r < M.
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